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ABSTRACT  

A novel Strut-Braced Wing (SBW) configuration is compared to a cantilevered High Aspect Ratio Wing 

(HARW) based on the Predator drone. Both configurations are optimized for maximum load factor bearing 

capability subject to a maximum mass, maximum structural stress and minimum aerodynamic efficiency (L/D) 

constraints. The optimization resorts to the generation of kriging based surrogate models for the different 

parameters involved. The sampling of the results is generated using a Fluid-Structure Interaction (FSI) 

procedure that couples an Equivalent Beam Model with Low Fidelity (Panel Method) or High Fidelity (RANS) 

aerodynamics. The generation of HF samples is attempted to be minimized using engineering judgment. 

Nevertheless, the dimensionality of the SBW optimization problem seems to require additional samples to 

improve the quality of the surrogate models. Results show that the proposed configuration does not seem 

suitable to increase the load bearing capability without penalizing structural mass and/or aerodynamic 

efficiency. The main reason for such difficulties is that although an increase in the wing Aspect Ratio (AR) 

allows to neutralize the drag penalty due to the presence of the strut, the deformation of the structure induces 

extra drag penalty.  

1.0 INTRODUCTION 

Aerodynamic efficiency and structural weight reduction are two aircraft design requirements not easy to 

comply with simultaneously. Nevertheless, the novel aircraft configurations proposed in the recent past are 

following the direction of more deformable structures as an outcome of increasing the aircraft’s aspect ratio 

(AR) while avoiding significant structural mass penalties. Examples of such configurations include High 

Aspect Ratio Wings (HARW), Joined Wings (JW), Struct Braced Wings (SBW) among others (Abbas et al., 

2013; Carrier et al., 2012; Cavallaro and Demasi, 2016; Wolkovitch, 1986). 

As a result of these higher levels of deformation, a sufficiently accurate prediction of the aircraft’s deformed 

shape is required to ensure that the expected aerodynamic benefits are not impaired by the actual in-flight 

shape. Static Fluid-Structure Interaction (FSI) analysis procedures (Dowell et al., 2003) can be used for this 

purpose, where different aerodynamic and structural analysis modules are coupled together to obtain a 

converged load-deformation combination as the solution for a specific flight condition. 
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Depending on the flight condition the convergence of the FSI procedure may be faster or slower. Higher load 

and/or deformation tend to require a higher number of iterations to achieve convergence. This may also mean 

high computational time or resources for an analysis, particularly if high fidelity models are required to assess 

the benefits of a configuration. This is in general the case when aerodynamic efficiency (therefore drag) is 

required to be quantified with an acceptable level of accuracy and a typical aerodynamic tool is used with a 

RANS (Reynolds Averaged Navier-Stokes) solver and an available turbulence model. 

In the event of using an aero-structural optimization procedure to obtain, assess and compare different 

configurations a direct approach based on High Fidelity (HF) FSI becomes too expensive, independently of 

the optimization algorithm choice or strategy (gradient based, genetic algorithm etc.) chosen (Wang and Shan, 

2007) 

An alternative approach to tackle this problem can be using surrogate models for the computation of the 

approximate values of the required quantities to calculate the objective function and constraints values. Some 

surrogate model formulations are available in the literature, for instance polynomial regression, radial-basis 

functions, kriging, neural networks, etc (Forrester et al., 2008; Wang and Shan, 2007). Based on a set of results 

for a sample of design variables, surrogate models can be built and used for a small computational cost in an 

optimization procedure. The drawbacks arise from the accuracy of the models being dependent on the size of 

the sample pool and on the dispersion of the sample. 

Although once calculated the models are cheap to use, obtaining an accurate model with the least amount of 

samples possible is not free of challenges. One usual approach is to improve the surrogate models by adding 

samples to the model. Automated criteria for determining which should be the next sample point added to the 

sample pool, e.g. mean squared error (MSE), Expected Improvement (EI) or a combination of those (Biles et 

al., 2007; Kleijnen et al., 2012), can be implemented to explore the design space, while using the optimum 

result from an optimization based on these models as a new sample point serves simultaneously to check the 

accuracy of the model predictions as well as to increase the number of sample points. A balance between 

exploration and exploitation of the design space is sought in order to improve the quality of the models in the 

regions of interest (Forrester et al., 2008).  

Another strategy to reduce the number of HF evaluations consists of using Lower Fidelity (LF) models to 

explore the design space and restrict the HF evaluations to the most promising designs and confirmation of 

optimal results. This is the multi-fidelity approach to the optimization, where an error surrogate model is built 

to predict the differences between HF and LF models (Zhang et al., 2018). 

In this paper, a configuration based on the Predator drone with an aspect ratio of 22 is compared to an SBW 

configuration. Both configurations are optimized for maximum load factor capability with minimum range 

and maximum stress constraints, using Kriging-based multi-fidelity and multi-disciplinary optimization 

considering FSI results from LF and HF aerodynamic solvers. 

In section 2.0, the Multidisciplinary analysis framework and models used for this comparison is described. 

Section 3.0 details the optimization problems for the two different configurations and Section 4.0 discusses 

the surrogate models generation and sample management. Section 5.0 shows the results obtained and compares 

the two optimized configurations. Finally, Section 5.0 summarizes the findings and the final conclusion of this 

work. Sections 6.0 and 7.0 present the references and acknowledgments, respectively. 

2.0 FRAMEWORK DESCRIPTION 

2.1 Multi-Disciplinary Analysis (MDA) 

An in-house tool is used to perform static FSI analysis on the aircraft configurations. This tool used a structural 

Equivalent Beam Model (EBM) coupled with either a LF or a HF aerodynamic model. 
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Lifting surfaces are assumed to have a wingbox type structure and the fuselage is assumed to behave like a 

rigid beam. The model extracts the sectional properties of the wingbox sections and translates those into a 

Timoshenko beam model. With the EBM model, the wingbox mass can be obtained, as well as the Von-Mises 

stress distribution on the beam elements representing the aircraft structure. The model is then used for linear 

analysis once the loading is defined.  

The LF aerodynamic model consists of a Panel Method (PM) model that includes fuselage, wing and tail 

components and calculates the lift and induced drag of the configuration. A friction drag correction is added 

to the calculations based on flat plate boundary layer models. Although fairly accurate to predict lift in the 

linear range of angles of attack (AOA), the model is not suitable to accurately predict drag or separation. More 

detailed descriptions of these models can be found in (Katz and and Plotkin, 2004). 

The HF aerodynamics uses a commercial software is used to perform RANS simulations of the aircraft 

configurations. This software is capable of more accurate drag predictions and accounts for the aerodynamic 

non-linearities related to the boundary layer (Sigrist, 2015). 

Payload and system masses and their inertial components are user inputs and modelled as mass points with 

inertia and are rigidly connected to the closest structural node. Again, a more detailed description of such 

modelling can be found in (Oden, 1975).  

The static FSI procedure couples aerodynamic and structural models using an iterative procedure where the 

structural deformation affects the mass distribution and external geometry of the aircraft, which is then meshed 

and analysed by the aerodynamic solver to get a new load and recalculate deformation. The procedure is 

considered converged when there is no significant change in the deformation after consecutive iterations. 

During the procedure, the fuel, payload and systems mass distribution is also affected by the structural 

deformation.  

During the FSI analysis the structure is clamped at the CG location. The aerodynamic loads will not trim the 

aircraft in general. As a consequence, the effect of the trim in the wing loads and deformation are being 

neglected in these analyses. The computational effort required to include these effects in the analyses was 

considered excessive for the purpose of this study. Propulsion effects in the aerodynamics are also neglected 

in this study. The analysed configurations consist of a pusher propeller engine that due to its position should 

not have a significant impact on the flow over the wing and tail. 

2.1.1 Multi-fidelity FSI calculations  

For low subsonic flight, the PM model predicts the lift distribution with a fair degree of accuracy in flows 

without significant separation. Taking advantage of this fact, one can expedite the HF FSI calculation by using 

HF aerodynamics only after the LF FSI has converged, since lift is accurately predicted and is the major factor 

at play in obtaining the structural model deformation. Therefore, the HF FSI consists of one FSI iteration on 

the converged LF FSI result unless the differences in deformation are deemed significant. 

2.2 Surrogate Models Generation 

The previous procedure for MDA is used to obtain several parameters of interest for a configuration with a 

specific set of design variables: structural weight; Lift (L), Drag (D), Deformation and Stress distribution for 

several Angles of Attack (AOA). These are the parameters required for the optimization of the configurations 

described below.  

2.2.1 Sampling of results  

The initial sampling of the design variables is based on the space filling Latin Hypercube sampling (LHS) 

method. This is the method that ensures a sufficient dispersion of the samples to cover the design space. The 

number of samples is set to five times the numbers of design variables (8) for the baseline HARW (40) and to 
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four times the number of design variables for the SBW (20), respectively. This way an adequate pool is 

generated with a reasonable computational cost.  

2.2.2 Kriging Surrogate  

To overcome the heavy computational costs of an optimization employing a gradient based approach or a 

genetic algorithm a surrogate model-based optimization approach is chosen. Between the different choices 

Kriging was selected as it provides predictions based on fewer number of samples compared to other surrogate 

models if the number of design variables is not excessive (Forrester et al., 2008). 

It is a spatial analysis method, considering a global low order regression, paired with local deviations based on 

covariances between the samples to fit and interpolate the data. The quality of the generated surrogate is 

contingent on the sample quality. Depending on the size of the pool and number of design variables, different 

approaches can be used. In Ordinary Kriging, the global model is assumed constant and the samples are 

interpolated in between. In Universal Kriging the mean value is a higher order polynomial. In the literature it 

can be found that Ordinary Kriging performs satisfying with frequently providing better results than Universal 

Kriging. In the present work for every surrogate model it is determined via a cross validation which approach 

is more suitable.  

2.3 Multi-disciplinary Design Optimization Procedure 

 
Figure 1: Process of the Multi-Disciplinary Design Optimization (MDO) process 

In Figure 1 the process is shown of the chosen MDO procedure. It was started with an initial data base of 

samples to represent the design space of interest. For those samples the respective weight was determined, and 

it was decided which of the samples are candidates for the aeroelastic analysis. Following, the FSI was used 

to compute the maximum load and stress distribution. Promising samples were taken further in the process for 

a high fidelity CFD analysis to determine the drag and therefore the L/D at cruise flight condition. This led to 

a database of samples for which the load, weight and aerodynamic properties where gained and which built 

the base for the surrogate model. Within the optimization process, surrogate models were built for those 

properties and new sampling points were chosen according to the predictions. This way, design space was 

explored in a more efficient way in regions of interest, where the number of samples could be reduced for 

increasing fidelity evaluations. 

3.0 MDO OF CONFIGURATIONS DESCRIPTION  

Two configurations are being compared in this work. One is based on the Predator drone geometry and 

performance metrics publicly available and some assumed characteristics as aerofoils geometry and internal 

structure topology. This configuration is assumed as the baseline to compare the next configuration to. 
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Figure 2: 3 view drawing of the Predator drone used as a baseline for this study [1] 
 

Figure 2 depicts a 3-view drawing of the Predator drone. As one can see, the configuration consists of a 

cantilevered HARW and an inverted V-tail. The dimensions of the aircraft wing, fuselage and tail were used 

to generate the baseline model. Some specifications for this aircraft are shown in Table 1.  

Table 1: Specifications for the baseline configuration based on publicly available information [1]. 
 

Component Value 

Length [m] 8.23 

Half-span [m] 8.42 

Root chord [m] 1.148 

Tip chord [m] 0.396 

Taper ratio 0.345 

MTOW [Kg] 1020 

MFW [Kg] 300 

Cruise speed [Km/h] 130-170 

Maximum Speed [Km/h] 217 

Cruise Altitude [m] 4600 

 

The second configuration is a variation of the baseline that has a strut connecting the main wing to the tail, 

which has been replaced by an inverted T-tail. Figure 3 shows a view of the proposed configuration. 
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Figure 3: Proposed configuration to increase manoeuvrability 

The potential benefits of an SBW configuration are usually based on the increase on aspect ratio and 

consequent reduction in induced drag that such a configuration supposedly would allow, at the expense of the 

extra structural member which is the strut. This member would contribute to structural weight and aerodynamic 

drag, which would be overcome by the benefits of lower main wing structural mass and lower induced drag. 

The overall outcome would be a higher L/D ratio and better aerodynamic efficiency. These are usually the 

goals for commercial aircraft in order to save operational costs (fuel). 

For a military application for which an existing aircraft already provides sufficient performance (p.e. range), 

it might be of interest to improve other performance metrics, as manoeuvrability. Therefore, in this work we 

will be comparing the SBW configuration with the baseline configuration in terms of maximum load bearing 

capability while maintaining or increasing the baseline range (L/D) and maintaining or decreasing the baseline 

wing’s structural weight.  

3.1 Baseline Configuration MDO 

The Baseline configuration is not completely defined. The available information provides the wing planform 

and tail dimensions. The remaining information required for a complete outer shape definition is the aerofoils 

geometry for wing and tail and the twist distribution. In this work, the aerofoil shapes are assumed to be 

transitioning linearly with span from SD7032 at the root to SD7037 at the tip. The tail aerofoil is assumed as 

a constant NACA0010 shape. The tail is assumed to have no twist along the span. 

On the structural side, the wing and tail structures are assumed to be of a wingbox type, and their chord wise 

extensions are fixed. The relative chord positions of the front and aft spars of the wingbox vary linearly with 

span in the wing and tail structures. The thickness of the tail structure is assumed to be constant. All structures 

are assumed to be made of an aluminium alloy with an allowable stress 𝜎𝐴𝑙𝑙𝑜𝑤 of 266 MPa.  Table 2 shows 

the assumed quantities for the baseline definition. 
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Table 2: Assumed aerofoils and structural box limits for the baseline aircraft definition. 

Item Value 

Root Aerofoil SD7032 
Tip Aerofoil SD7037 

Vtail Aerofoil NACA0010 

Box Limits @ root 15%-65%  

Box Limits @ tip 25%-40% 

Vtail Box Limits @ root 15%-50% 

Vtail Box Limits @ tip 25%-40% 

Vtail Box Thickness [mm] 1.5 

 

The baseline configuration is then determined as the optimized result of an MDO procedure with design 

variables representing the wing spanwise twist distribution and the wingbox spanwise thickness distribution. 

Both distributions are assumed to be bilinear functions of the span position. The aircraft should maximize the 

load factor in cruise flight conditions while maintaining the structural mass below the 75Kg threshold without 

exceeding the allowable stress limit for the material and without degrading the aerodynamic efficiency (L/D) 

below 26. These mass and L/D limits are somewhat arbitrary and were chosen based on reasonability given 

the MTOW and AR of the aircraft (Corke, 2003). The optimization statement for this problem is: 

min
𝑥

𝑓(𝑥1 … 𝑥𝑚) = −𝑛 (𝑥1 … 𝑥𝑚) 

𝑠. 𝑡. 𝑚𝑤𝑖𝑛𝑔(𝑥1 … 𝑥𝑚)  ≤ 75 

 𝐿/𝐷(𝑥1 … 𝑥𝑚)  ≥ 26 

 

With 𝒙 =  [𝑥1 … 𝑥𝑚] being the 𝑚 design variables, 𝑛 the maximum bearable load factor at MTOW, 𝑚𝑤𝑖𝑛𝑔 

the wing mass in Kg and 𝐿/𝐷 the Lift over Drag value in cruise flight conditions and a half tank fuel load 

aircraft weight. For the baseline configuration, being a cantilevered wing with a continuous thickness 

distribution along the structure with a small number of variables describing it, the calculation of the maximum 

load factor is done by determining the AOA and lift at which the allowable stress in the wing structure is 

reached first and then build a surrogate model relating the load factor to the design variables directly. If a 

gradient based optimizer is used to solve the optimization problem this way, the gradients of the structural 

variables not affecting the maximum stress will be zero, therefore increasing the probability of discontinues 

gradients on the load factor function. Nevertheless, in this problem only one of the structural variables will be 

in this situation (root or tip thickness) and potential difficulties in getting an optimum result are tackled by 

starting the optimization with different initial design sets. 

The two constraint functions are also surrogate based calculated. While the structural mass surrogate model is 

built directly from the sample results, the L/D surrogate model is based on the L/D values in cruise calculated 

for each configuration. This calculation for each configuration uses lift and drag obtained for specific AOA 

values (0,2,5 degrees) and linear and quadratic regressions are used to approximate the lift and drag vs AOA 

curves for a specific configuration and with these curves determine the cruise AOA and the corresponding L/D 

ratio in cruise. Therefore, the cruise condition of lift balancing weight in cruise is assumed to be approximated 

by the predictions of the surrogate model to a degree of accuracy that is to be assessed. 

Table 3 lists the design variables, their boundaries and description. 
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Table 3: Design variables boundaries and description for the baseline MDO. 

Design Variable Boundaries Description 

DV1 [mm] [2.0,5.0] Thickness of box @ the wing root 

DV2 [mm] [1.0,3.0] Thickness of box @ the break position 

DV3 [mm] [0.5,2.0] Thickness of box @ the wing tip 

DV4 [0.2,0.9] Spanwise relative break position for the thickness distribution  

DV5 [º] [2.0,6.0] Wing twist @ the wing root 

DV6 [º] [0.0,5.0] Wing twist @ the break position 

DV7 [º] [-1.0,3.0] Wing twist @ the wing tip 

DV8 [0.25,0.8] Spanwise relative break position for the twist distribution  

3.2 SBW Configuration MDO 

Similarly to the baseline configuration, the SBW configuration depicted in Figure 3 is assumed to have the 

same wingbox type of structure, fixed chord wise extension of the wingbox for the whole structure and fixed 

aerofoils shape. For the main wing part, the aerofoils are the same and vary in the same spanwise manner as 

the baseline wing. The tail, strut, horizontal tail and vertical tail aerofoils are constant NACA0010. The same 

structural material is used. Table 4 summarizes the assumptions for the design of this configuration. 

Table 4: Assumed aerofoils and structural box limits for the SBW aircraft definition. 

Item Value 

Root Aerofoil SD7032 
Tip Aerofoil SD7037 

Tail & Strut Aerofoil NACA0010 

Box Limits @ root 15%-65%  

Box Limits @ tip 25%-40% 

Strut Box Limits 25%-75% 

Tail Box Limits 25%-75% 

 

The configuration is now allowed to vary planform shape and area (although the main wing is still tapered) 

besides twist distribution, and several parameters define the structure thickness along its various segments. 

Figure 4 illustrates the structural design parameters used in the optimization of the configuration.  

One can see from Figure 4 that the thickness distribution is not continuous along the structure. For the main 

wing, the inboard segment is defined by a constant thickness followed by a linear distribution for the outboard 

segment after the wing-strut joint. The strut thickness is constant from the joint to the beginning of the straight 

portion of the strut. Here there is discontinuity on the thickness distribution. Then the thickness varies linearly 

to and from the middle of that segment until the chord transition from the strut to the horizontal tail (HT) starts. 

Another linear thickness distribution is allowed in this transition until the HT tip. At this point a discontinuity 

in thickness is present and there is a linear distribution from HT tip to HT root and then from HT root/Vertical 

tail (VT) tip to VT root. 
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Figure 4: Front view schematic of the structural Design Variables (DV) for the SBW MDO. 

Table 5 lists the design variables for the SBW optimization, their boundaries and description. 

Table 5: Design variables boundaries and description for the SBW MDO. 

Design Variable Boundaries Description 

DV1 [0.9,1.1] Area factor relative to the baseline 

DV2 [0.9,1.5] Aspect ratio factor relative to the baseline 

DV3 [0.3,0.4] Taper ratio 

DV4 [mm] [1.0,4.0] Thickness of the inboard wing segment 

DV5 [mm] [1.0,3.0] Thickness of the outboard wing segment @ the joint position 

DV6 [mm] [0.5,2.0] Thickness of strut @ the beginning of wing-HT segment 

DV7 [0.5,0.75] Strut-Wing joint spanwise relative position 

DV8 [mm] [3.0,6.0] Thickness of strut from joint to beginning of wing-HT segment 

DV9 [mm] [0.5,1.0] Thickness of strut @ middle of wing-HT segment 

DV10 [mm] [0.5,2.0] Thickness of strut @ end of wing-HT segment 

DV11 [0.4,0.7] Spanwise relative break position for the twist distribution  

DV12 [º] [3.0,5.0] Wing twist @ the wing root 

DV13 [º] [1.0,4.0] Wing twist @ the break position 

DV14 [º] [-1.0,2.0] Wing twist @ the wing tip 

DV15[mm] [2.0,4.0] Thickness @ end of strut-HT transition 

DV16 [mm] [2.0,7.0] Thickness @ VT root 

DV17 [0.4,0.6] Strut chord relative to wing chord @ joint 

DV18 [mm] [1.0,4.0] Thickness @ HT root/VT tip 

DV19 [mm] [0.5,1.0] Thickness @ 2/3 HT spanwise position 

DV20 [0.1,0.25] Joint chordwise position relative to wing chord @ joint 

DV21 [º] [-5.0, 20.0] Cruise AOA 

DV22 [º] [-5.0, 20.0] Max n AOA 
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The MDO procedure for this configuration is similar to that of the baseline. The aircraft is intended to 

maximize the load factor subject to the same mass, stress and aerodynamic efficiency constraints as the 

baseline. The SBW optimization problem statement is as follows: 

min
𝑥

𝑓(𝑥1 … 𝑥𝑚) = −𝑛 (𝑥1 … 𝑥𝑚) 

𝑠. 𝑡. 𝑚𝑤𝑖𝑛𝑔(𝑥1 … 𝑥𝑚) ≤ 75 

 𝐿/𝐷(𝑥1 … 𝑥𝑚)  ≥ 26 

 𝜎𝑉𝑀
𝑖 ≤ 𝜎𝐴𝑙𝑙𝑜𝑤         𝑖 = 1. . 𝑙 

 
‖𝐿𝑐𝑟 − 𝑊𝑐𝑟‖

𝑊𝑐𝑟
≤ 0.5% 

 

With 𝒙 =  [𝑥1 … 𝑥𝑚] being the SBW 𝑚 design variables, 𝜎𝑉𝑀
𝑖  represent the Von Mises stress at the ith control 

node, 𝐿𝑐𝑟 and 𝑊𝑐𝑟 are the lift and weight at the cruise point respectively. The other parameters have the same 

meaning as for the baseline configuration optimization. 

Using the stress constraints prevents the zero gradient problem previously mentioned for the baseline 

configuration optimization which would be more severe in the SBW case, due to the more complex structure 

and the amount of structural design variables involved. 

As can be noticed by the set of constraints for this problem, the load factor and the stress in the control nodes 

is now calculated based on the lift using the maximum load factor AOA as a variable to be determined during 

the optimization. Surrogate models of LF lift and 𝜎𝑉𝑀
𝑖  for specific AOA values (0,2,5 and 10 degrees) are 

generated and linear regressions are used to approximate the lift and 𝜎𝑉𝑀
𝑖  vs AOA curves and then obtain the 

load factor and stress constraints values.  

Also, the cruise lift and the corresponding L/D ratio are calculated using the cruise AOA, which is a variable 

to be determined during the optimization. The L/D calculation uses now surrogate models of HF lift and drag 

for specific AOA values (0,2 and 5 degrees) and linear and quadratic regressions are used to approximate the 

lift and drag vs AOA curves for a specific configuration. With these curves one determines the cruise AOA 

and the corresponding L/D ratio in cruise. This approach is now forcing the cruise flight L=W condition 

explicitly and its accuracy is now dependent in the accuracy of the underlying lift and drag predictions. 

4.0 RESULTS AND DISCUSSION 

4.1 Quality of surrogate models 

The baseline database for the HARW consist of 40 samples that are nearly evenly spread across the design 

space via an LHS. For each configuration an LF MDA analysis is performed for four different AOAs which 

in principle allow the interpolation of the results for the flight conditions of interest (cruise and maximum 

load). Of those 40 samples the most promising ones regarding weight and stress were selected to proceed with 

HF MDA analyses for the cruise flight condition. The enrichment of the data base with additional samples was 

done using only results of the surrogate based optimization process. 

To reduce computational cost in the optimization process, sampling for the SBW configuration was done in a 

multistage approach. For each of the 80 sampled configuration the weight was determined. As the weight is a 

constraint in the optimization, samples with a weight higher than the boundary plus a margin (10%) were not 

evaluated with the LF MDA resulting in a total of 35 samples evaluated. This way only the regions of interest 

of the design space are explored. Within those samples 21 random sample results are computed using HF 
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MDA to assess the L/D in cruise conditions. Likewise to the HARW configurations, additional samples are 

added to the pool based on the results of the optimization. 

For assessing the quality of LF based surrogate models, a cross validation method is used, where each sample 

of it is removed, a new reduced database is generated, and the removed sample is evaluated. The resulting 

maximum error for a single sample and the average error of the pool gives a measurement of the quality of the 

surrogate model. Table 6 shows the maximum and average error for the surrogate models for mass and 

maximum load factor for both configurations. 

Table 6: Quality assessment of the surrogate models of the baseline. 
 

Configuration Surrogate model Number of Samples 
Maximum 

Error [%] 

Average 

Error [%] 

HARW 

Load Factor 51 60.77 9.27 

Mass  51 10.00 2.33 

SBW 

Load Factor 89 58.70 16.31 

Mass  89 64.29 12.98 

 

As one can see from the table, the average error for predictions based on the 51 samples for the baseline 

configuration is below 10%, and the mass prediction is below 2%. For the maximum error single higher values 

result in the prediction as the pool contains samples on the boundaries where the predictions are not accurate. 

Comparatively to the initial surrogate models based in 40 samples, the additional samples added to the pool 

during the optimization process did not show an improvement for the overall design space prediction. The 

reason for that is that they are located not widely spread across the design space but in an area of interest, 

resulting in an exploitation rather than an exploration.  

Taking a closer look into the region of interest and restricting the error calculation to regions successively 

reduced around the calculated optimum, one can observe that the maximum and average error tend to reduce 

their magnitude. Therefore, as the optimization procedure progresses toward convergence, the surrogate 

quality in what is expected to be the region of interest increases.  

Another potential improvement in surrogate quality with an increasing data base of samples is the possibility 

of increasing the order of the regression model used in the Kriging model building. Through another cross 

validation using the extended pool it was found a higher order regression did not provide benefits in the 

prediction, neither for the average nor the maximum error improvement. 

4.2 Samples results 

4.2.1 HARW Configuration 

Figure 5 and 6 below show the samples results for the maximum load factor and cruise L/D versus the wing 

structure mass. One can observe a trend of load factor increase with structure mass in Figure 5, as expected. It 

also shows a degree of dispersion of the data, which is also to be expected, since the maximum load is 

dependent on the stress of one part of the structure which is the first to exceed the stress while everywhere else 

the structural thicknesses can change within some margin, leading to different structural masses. 
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Figure 5: Maximum Load Factor vs Wing Structure Mass for the HARW configuration samples. 

 

Figure 6: Cruise L/D vs Wing Structure Mass. 

Figure 6 shows the HF results for the samples used for this kind of analysis. No particular trend is identified 

in this figure. Given that the wing planform is unchanged, the dispersion of the data suggests that deformation 

and twist distribution play a role in the cruise L/D, as they should, although the L/D variation within the sample 

is around 5%. 
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4.2.2 SBW Configuration 

Figure 7 and 8 show the maximum load factor versus structure mass and the cruise L/D versus AR respectively. 

 

Figure 7: Maximum Load Factor vs Wing Structure Mass for the SBW configuration samples. 

 

Figure 8: Cruise L/D vs Wing Structure Mass for the SBW configuration samples. 
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One cannot observe a trend between maximum load factor and structure mass for the SBW as was observable 

for the HARW. One possible explanation is that the complexity of the structure and the increased number of 

structural variables increase the dispersion of the results relatively to the HARW configuration.  

Note the two highest mass samples present in the pool. These where analysed to understand the maximum 

load that this structure would be able to bear if no mass restrictions would exist. One has the same AR as the 

HARW while the other has an AR 1.5 times higher. As a result, the load bearing capability of the later is 

significantly reduced in comparison. 

The results in Figure 8 are counter intuitive in the sense that one is expecting the induced drag to be reduced 

as AR increases and no trend can be identified from the results. Furthermore, the defined requirement for an 

L/D of 26 is not fulfilled by any of the HF analysed samples. In order to understand the reasons this rigid 

aircraft HF simulations were performed on samples with varying AR. Table 7 shows the L/D results of samples 

#9 and #12 with AR factors of 1.4 and 0.94 respectively, for rigid and deformed shapes simulations and AOAs 

of 0,2 and 5 degrees: 

 Table 7: Comparison of rigid vs deformed L/D results for the two different AR samples. 

SBW sample # Rigid Deformed Error [%] 

#9 

AR factor=1.4 

24.32 22.46 7.6 

26.25 24.04 8.4 

20.06 19.43 3.1 

#12 

AR factor=0.94 

23.63 24.12 -2.1 

24.47 24.32 0.6 

18.93 18.52 2.1 

 

The results in Table 7 show that for the rigid analysis the sample with higher AR has a higher L/D, therefore 

as expected in theory. Nevertheless, it also shows that the effect of deformation in the higher AR is of higher 

magnitude than for a lower AR. Therefore, it seems that although the extra drag due to the presence of the strut 

in the SBW configuration is balanced by the AR increase as hypothesised, the deformation of the structure 

seems to degrade the aerodynamic performance significantly. 

4.3 Comparison of final configurations 

4.2.1 HARW Configuration 

At the current status of the optimization, the best feasible sample (#46) obtained so far that respects the 

constraints is calculated to bear a load factor of 2.09, having a mass of 72.365Kg and with a cruise L/D of 

26.44.  

The stress distribution at the maximum load condition for this sample is shown in Figure 9 as well as the twist 

and thickness distributions along span. 
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Figure 9: Stress, twist and thickness distributions of the HARW current best feasible sample. 

It would be expected that a somewhat higher load factor can be achieved with a higher structural mass even at 

the expense of a degradation in L/D. In fact, the last sample analysed (#51) exceeds the maximum mass 

constraint with a mass of 77.548Kg but also improves the load factor. Figure 10 shows the configuration 

results.  
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 Figure 10: Stress, twist and thickness distributions of the HARW last analysed sample. 

The prediction vs analysis results for sample #51 are shown in Table 8. 

Table 8: Comparison of prediction and analysis results for the last analysed sample. 

HARW sample # Parameter 
Surrogate 

model 
Analysis Error [%] 

51 

Load Factor 2.28 2.44 6.33 

Mass 77.46 77.55 0.12 

L/D 26.15 26.32 0.64 

 

4.2.2 SBW Configuration 

As stated before the SBW configuration proposed did not comply with the L/D requirement for any of the 

analysed samples so far. Thus, the configuration selection of the best available sample is somewhat arbitrary. 

The choice was made on sample #81 which has a similar mass to the HARW (72.688Kg), a cruise L/D of 

24.40 and a maximum load factor of 1.89. Comparing to the HARW planform, this sample increases the AR 

by 10% and reduces wing area by 4%.  

Figure 11 shows the deformed shape and pressure distribution LF FSI results and the nodal displacement of 

the structural model for the maximum load factor of the SBW #81 sample. Figure 12 shows a plot of the stress 

distribution for that same load case. 
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 Figure 11: Deformed shape and pressure distribution LF FSI results (up) and structural model deformed 
shape vs undeformed shape (down) for the SBW #81 sample. 
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 Figure 12: Stress distribution in the spanwise (up) and streamwise (down) directions for the SBW #81 
sample at maximum load case. 
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One can notice from Figure 12 that the stress limit is reached in the tip of the VT/root of the HT. Nevertheless, 

the maximum thickness limit at that point of the structure is still far from reached as can be seen in Table 9 

below. The structure could therefore be reinforced in this region and increase the load factor. The question 

remains if the resultant deformation would help improve the L/D value. 

Figure 11 above shows the deformed versus undeformed nodal positions of the structural model for the 

maximum load factor. One can observe that the wing is pushed aft by the strut while bending upwards. In the 

cruise flight case, this is likely to cause a twist down and reduce the load on the outboard part of the wing, 

leading to a change on the lift distribution that jeopardises the gains from the AR increase. A better tuning of 

the undeformed twist distribution and chordwise strut position might help mitigate this problem at the expense 

of higher number of samples and related computational time. Table 10 below shows that the surrogate errors 

are still high with the generated database and that it could use further samples. 

Table 9 shows the numerical values for the design variables of the SBW sample #81: 

Table 9: SBW #81 sample design variables. 

Sample # DV1 DV2 DV3 DV4 DV5 DV6 DV7 

81 0.960 1.097 0.374 1.713mm 1.442mm 1.262mm 0.588 

DV8 DV9 DV10 DV11 DV12 DV13 DV14 DV15 

3.876mm 0.674mm 1.282mm 0.556 4.109º 1.974º -0.027º 2.979mm 

DV16 DV17 DV18 DV19 DV20 DV21 DV22  

3.424mm 0.476 1.578mm 0.719mm 0.173 1.75º 8.00º  

 

Table 10: Comparison of prediction and analysis results for the SBW #81 sample. 

SBW sample # Parameter 
Surrogate 

model 
Analysis Error [%] 

81 

Load Factor 1.69 1.89 -10.58 

Mass 70.893 72.688 -2.47 

L/D 22.07 24.40 -9.50 

 

Unfortunately, the reduced number of database extension samples obtained so far do not allow definite 

conclusions on if the increase in AR denies this configuration to actually increase the load bearing capability 

without mass increase or penalties in aerodynamic efficiency but these results show that it should be hard to 

comply with the L/D requirement and that a potential benefit in the maximum load factor for this configuration 

does not appear to become significant.  Table 11 below supports these affirmations by compiling the selected 

results for the two configurations. 

 

 



A framework for multi-fidelity multi-disciplinary kriging-based 
surrogate model optimization of novel aircraft configurations 

3 - 20 STO-MP-AVT-324 

 

 

Table 11: Comparison of SBW and HARW selected samples. 

Configuration Sample # Area Factor AR factor Mass (Kg) L/D n 

HARW 46 1.0 1.0 72.365 26.44 2.09 

HARW 51 1.0 1.0 77.548 26.32 2.44 

SBW 81 0.96 1.10 72.688 24.40 1.89 

 

5.0 CONCLUSIONS 

An SBW configuration was proposed in order to improve the manoeuvrability of surveillance/combat drone. 

A surrogate model-based optimization framework was used in the MDO of a HARW and an SBW 

configurations based on the Predator drone and allow a comparison between the two. Both configurations were 

optimized for maximum load factor bearing capability while maintaining minimal aerodynamic efficiency and 

maximal structural mass.  

The surrogate model-based optimization resorted to LF and HF FSI calculations for each configuration. In 

order to reduce the number of HF evaluations, engineering judgement was used to decide which samples 

should be used to build the HF based aerodynamic surrogate models and avoid exploring regions that do not 

appear of interest. 

The HARW configuration was optimized to some extent, although it would benefit from increased number of 

samples to improve the converge the optimized result. This problem is simpler than the SBW optimization 

problem in dimensionality and structural complexity. 

Sample results show that deformation has an impact on aerodynamic efficiency for the SBW configuration, 

since no trend could be identified with varying AR. Furthermore, the increase in AR seems to possibly 

compensate the increased drag from the strut presence in a rigid configuration, but the associated deformation 

appears to introduce significant drag increase.  

As the initial sample did not provide high enough L/D values, an optimized result could not be obtained for 

the SBW at this point. An arbitrary sample was selected as the “best” sample available for comparison with 

the HARW configuration. 

The comparison shows that, at the light of current results, it is unlikely that the proposed configuration will 

render significant benefits in load bearing capability even with reasonable degradation of aerodynamic 

efficiency or structural mass. Further results will allow for a final assessment on this subject. 
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